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a b s t r a c t

Multiple instance learning (MIL) has been proposed to classify the bag of instances. In practice, we
may meet the problems which have more than one view data. For example, in the image classification,
textual information is always used to describe the image, which can be considered as two-view data. In
this paper, we propose a new similarity-based two-view multi-instance learning (STMIL) method that
can incorporate two-view data into learning so as to improve classification accuracy of MIL. In order
to obtain the predictive classifier, we first convert the proposed model into a convex optimization
problem, and then propose a new alternative framework to solve the proposed method. We then
analyze the convergence of the proposed STMIL method. The experiments have been conducted to
compare the performance of our proposed method and the previous methods. The results show that
our method can deliver superior performance than other methods.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Multiple instance learning (MIL) [1–3] is a method evolved
from supervised learning algorithm, which is proposed to address
the classification of bags. MIL is originally used for drug activ-
ity prediction [1], its purpose is to build a learning system by
learning the known and unknown molecules of pharmaceuticals,
and to predict whether other new molecules are suitable for
pharmaceuticals. In MIL, the labels in the training set are asso-
ciated with sets of instances, which are called bags. In traditional
MIL, if a bag contains at least one positive instance, this bag
is labeled as positive; and if all the instances are negative, the
bag is labeled negative. The task of MIL is to classify unlabeled
bags by using the classifier into positive or negative bags. With
the development of computer science and technology, MIL is
applied more and more frequently in image classification [1,4,5].
In image classification, MIL treats an image as a bag, and each
segmentation of an image is treated as an instance [6–8]. For
example, Duan et al. [9] propose GMIL algorithm, which relaxes
the constraints on the negative bag. They use k-means clustering
algorithm to aggregate the related images into a cluster according
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to low-level visual features. And then, they regard a cluster as a
bag, and consider each image in the bag as an instance. The image
classification problem is then transformed into a MIL problem.
In addition, Yingying et al. [10] propose RDMIL algorithm, they
regard each image as a bag composed of different regions/patches
(i.e., instances), and model image classification as a MIL problem.

The work of MIL is mainly divided into the following three
categories [11]. In the first category [12], MIL trains the classifier
by setting the instance tags in the bag as positive, and uses the
standard supervised learning methods or iterative frameworks to
build the classifier. Paul et al. [13] propose the MILBoost, which
uses the label of the bag to initialize the label of instances, so
that the label of the instance is the same as the label of the
bag, and then uses a boosting framework to learn the classifier.
In the second category [14], MIL establishes a mechanism that
maps instances to ‘‘bag-level’’ training vectors. For example, Jia
et al. [15] propose the MILDM, which uses instances to map each
bag to a new feature space to get the best instance of the bag.
MILDM maps the original feature space’s bag into the new feature
space by discriminative instance pool, and the training classifier
is used to predict the class label. In the third category [16], MIL
focuses on selecting a subset of instances from the positive bag
to learn the classifier. For an example, Liming et al. [17] propose
the MILMPC, which is a method for instance selection based on
the MIL framework. MILMPC uses the multi-point concept to deal
with the problem of instance selection, that is, each possible con-
cept is associated with a similar set of instances. The candidate
multi-point concept is derived from the concept extraction of
the instance in the positive bag. The method then calculates the
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Fig. 1. Web images with text descriptions.

relevance of each candidate concept to the positive class, and
adds the concept with the highest relevance to a concept set until
no new candidate concept is added.

Although there is a lot of research on MIL, however, we may
meet the multi-instance data which consists of more than one
view in practice. For example, in the image classification, in addi-
tion to image information, there are some text information in the
image classification [18]. These text information can be applied to
image classification to improve classification accuracy [19,20]. For
example, on the Internet, when a user shares an image, different
users can comment on the image. As shown in Fig. 1, the dog is on
the left, and the cat is on the right. The text below these images
are the comments and descriptions of these images by different
users A, B and C. Through the above example, we can find that
these comments or descriptions may be valuable for images re-
trieval and classification. This kind of problem is also named as
image with annotation problem [21–24]. Although deep learning
has been used in MIL for image with annotation problem [21–24];
however, most of them use the existing network for MIL, and it
is hard to design network architecture especially for MIL.

In this paper, we propose a new similarity-based two-view
MIL (STMIL), based on our previous developed SMILE method [25]
for single task learning, STMIL method can incorporate both two-
view data into the MIL. The proposed method can be used in
the problem of image classification associated with a number of
description text. We first propose similarity-based two-view MIL
model, and then develop a new multiple instance framework to
obtain the predictive classifier based on the proposed model. The
main contributions of our work are as follows:

(1) We propose a new similarity-based two-view method
(STMIL), based on the basic MIL method [25] to incorporate
two-view data in to a learning model, such that we can
deliver a more accurate predictive classifier. In the STMIL
model, we put forward to utilize the hyperplane constrains
of two views to maintain a certain harmonious relationship
between the hyperplanes in the two views, which can be em-
bedded in the similarity-based two-view model. In addition,
we utilize Lagrange method to convert the similarity-based
multiple instance model into its Dual form such that we can
solve the objective model to obtain the initial SVM classifier.

(2) In order to obtain the multiple instance classifier, we develop
a new alternative framework to solve the similarity-based
two viewMIL, and obtain the predictive classifier. In this pro-
cedure, we first initialize the positive example for each bag at
its own view, and then update the multiple instance classifier

synchronously. The proposed method is then utilized for im-
age classification with description text. We further analyze
the convergence of the proposed STMIL method.

(3) The extensive experiments have been conducted to evaluate
the performance of our proposed STMIL method. We eval-
uate our proposed method on the NUS-WIDE and Flickr30k
Entities datasets. The results show that our method demon-
strates highly competitive classification accuracy and shows
less sensitivity to the labeling noise than the existing MIL
methods.

The rest of the paper is organized as follows. Section 2 dis-
cusses related work. Section 3 proposes our similarity-based two-
view MIL. Experiments are conducted in Section 4. The conclusion
is presented in Section 5.

2. Related work

In this section, we will review the previous works related
to our proposed similarity-based two-view MIL method. In Sec-
tion 2.1, we review the multiple view learning, and in Section 2.2,
we review the previous work on MIL.

2.1. Multiple views learning

The initial multi-view learning algorithm is presented in the
work [26], here ‘‘views’’ means the data coming from multiple
sources or different feature subsets. In some practical problems,
the same object can be always described in a variety of ways or
angles, and each view data can describe the object from its own
perspective. For example in the video classification, the image
information and voice information can be two different features,
and they can be regarded as two-view data. In addition, for the
image classification with textual description information, the im-
age and the text are always regarded as two-view data, which can
be utilized in the following classification procedure. By training
the classifier with multi-view learning, the performance of the
classifier in unbalanced classification can be improved [27]. For
examples, Zhe et al. [27] propose a learning framework consisting
of fisher kernel and Bi-Bagging method to solve the problem
of imbalance. Xijiong et al. [28] propose the regularized multi-
view least squares twin support vector machines to generate
binary classifiers and improve the generalization performance of
multiple different feature sets. There are many algorithms in the
development of multiple views learning, such as co-training [29],
multi-kernel learning [30–33], subspace learning algorithm [34,
35].

The co-training algorithm is proposed to solve the problem
of semi-supervised multiple views learning. In this method, the
classifier is first trained by marking data on the two views space,
and each classifier selects a number of data with higher predic-
tive confidence in the unlabeled data and then adds the labeled
data to another related classifier. Data centralization enables the
other party to update these new tag data and iterates the pro-
cess until a certain stop condition is reached. Meng et al. [36]
propose a weighted co-training algorithm for cross-domain im-
age sentiment classification to predict the emotional polarity of
images. They train the two sentiment classifiers with images
and corresponding text annotations, and set the similarity be-
tween the source and target domains. Co-training algorithm can
also be used for hyperspectral image classification. Xiangrong
et al. [37] propose a semi-supervised method based on a modified
co-training process with spectral and spatial views. They use the
original spectral features and the 2-D Gabor features extracted
from the spatial domain as two different views of the common
training. Their approach effectively improves the performance of
co-training.
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Multiple kernel learning (MKL) combined with support vector
machine is used to solve the problem of non-linear classification
of training samples. In a large number of kernel functions, the
commonly used Gaussian kernel function [38,39] has consider-
able flexibility and maps data low-dimensional space to high-
dimensional space. Multilinear subspace learning is a dimension-
ality reduction method by directly mapping high-dimensional
tensor data to low-dimensional space. When the data is dis-
tributed in a high-dimensional space, we do not deal with it very
effectively, because the complexity of the classification model is
correspondingly increased due to the too high dimension, which
ultimately leads to the classification model being easy to overfit.
Xiangping et al. [40] propose a multiple feature fusion method
based on multi-class multiple kernel learning. Their method fuses
many features, which can effectively avoid decomposing multiple
types of problems into multiple binary classifications and directly
get the classifier. Qi et al. [41] propose a method based on
sparse coding and multiple kernel learning. They add the spatial
information by dividing the image with the spatial pyramid, and
use nonlinear SVM for image classification, and achieve optimal
trade-offs between different kernels.

Multiline subspace learning can solve this problem very ef-
fectively. There are two principles of multiple views learning,
consensus principle and complementarity principle. In each view,
there is a consensus between them, that is, common constraints
and they must work together to fully describe the data. The single
view is a one-sided description of the data. Jun et al. [42] pro-
pose semi-supervised multi-modal subspace learning (SS-MMSL).
They use the data distribution revealed by unlabeled data to
enhance subspace learning, and use alternating iterative opti-
mization algorithms to explore the complementary features of
different modes. Xiaozhao et al. [43] propose an image classifica-
tion method called robust latent subspace learning (RLSL). They
translate the RLSL problem into a joint optimization problem for
potential subspace learning and classification model parameter
prediction. RLSL combines feature learning with classification,
making learning data representation in potential subspaces more
discriminating. Xiao et al. [44] propose MRSLA which utilizes
multi-view data sources to discover potential disease-associated
miRNAs. The MRSLA method projects the miRNA-disease associ-
ations into two subspaces, and uses a low-rank approximation-
based recommendation method to predict disease miRNA can-
didates. Xin et al. [45] propose a novel multi-view discriminant
analysis based on Hilbert–Schmidt Independence Criterion (HSIC)
and canonical correlation analysis (CCA). They use HSIC to identify
lower dimensional distinguishable common subspaces, and use
CCA to achieve maximum correlation between different views in
the common subspace.

In addition, multiple views learning can also be applied to
clustering of data, known as multi-view clustering [46,47]. Yiling
et al. [46] propose a multi-task multi-view clustering algorithm
in heterogeneous situations based on Locally Linear Embedding
(LLE) and Laplacian Eigenmaps (LE) methods (L3E-M2VC). This
method solves the problem of insufficient information about the
label set and different label sets in all learning task. This method
maps samples in multiple views to a common view, transforms
the common view into a discriminative task space, and clusters
the data by k-means method. Hao et al. [47] propose a general
Graph-Based System (GBS) for multi-view clustering. The graph
matrix of the view data is obtained by extracting the feature
matrix of the view, and then the clustering is obtained by fusing
the graph matrix.

The two-view learning is a form of multi-view learning with
arbitrary number of views. Kernel canonical correlation analysis
(KCCA) is an effective preprocessing step that can improve the
performance of SVM when two views of the same phenomenon

are available. According to this conclusion, Jason et al. [48] pro-
pose the SVM-2K. Considering the existence of labeled and unla-
beled data, such as spam detection, Guangxia et al. [49] propose
the two-view transductive method. The method constructs two
views with labeled and unlabeled data to train classifier, and
applies global constraints to each labeled and unlabeled data.
Canonical correlation analysis (CCA) requires that the data of two
views must be matched, and canonical principal angles correla-
tion analysis (CPACA) [50] makes the classic CCA out of this limit.
The basic idea is that the correlation of two views is represented
by the similarity between two subspace spanned by the principal
components. Two-view learning can also be applied to emotion
recognition system [51], which is used to classify facial expression
in video. The basic idea is to extract two basic facial expression
features and construct two-view classifiers.

2.2. Multiple instance learning

The initial MIL algorithms are presented in [52–56], which
defines ‘‘bags’’ as a set of multiple instances. If all the sample
markers are known, it is a supervised learning problem. MIL has
wide applications and solves learning problems with ambiguity
on training samples. However, when there are many samples
of labels we do not know, MIL is useful and its solution to the
problem is iterative optimization. Assuming that all the markers
are known (all the instances in the positive bags are labeled as
positive labels, the instances in the negative bags are negative
labels). Then, a classification model can be obtained by some
supervised learning methods, through which we can predict each
testing sample with the model [57–59].

Maron et al. [53] propose a framework which is called Diverse
Density (DD) to solve multiple-instance problems. The DD is
a measure of the degree of integration between positive bags
and negative bags. They can find the intersection point (the
required concept) and a set of feature weights that lead to optimal
crossover by maximizing the density. EM-DD [55] selects an
instance that is most consistent with the current assumptions
in each positive bag, so as to predict the unknown bag. EM-
DD repeatedly guesses subset of instances from positive bags
to learn classifiers. Andrews et al. [52] propose MI–SVM and
MI–SVM to solve MI learning problems. MI–SVM maximizes the
bag margin by utilizing an iterative method to learn the SVM
classifier, while MI–SVM maximizes the instance margin through
the possible label allocation and hyperplane. Correia et al. [59]
propose θ-MIL to detect polarity of movie reviews, they use the
IMDb movie review corpus dataset to test θ-MIL for SVM and
achieve good results. They improve the MI–SVM and MI–SVM
algorithm and obtain the θ-MI–SVM and θ-MI–SVM algorithms.
Lixin et al. [9] propose the generalized MIL (GMIL) to improve
web image search. Their GMIL relaxes the constraint on negative
bags on the traditional MIL, they allow positive instances with a
certain proportion in negative bags, and the constraints in posi-
tive bags are the same as those of the traditional ones. There may
be noise in the data, robust model fitting methods [60,61] can
solve this problem. Robust model fitting methods can effectively
segment multi-structure data, even though these data are heavily
contaminated by outliers. They first use a greedy search strategy
to sample the dataset to generate the model hypotheses, then
use different detectors to detect whether the parameters of the
generated hypotheses are correct.

In addition, deep multiple instance learning (DMIL) has been
studied. The DMIL framework [21] considers a set of tags for
an image as a ‘‘bag’’, and considers one of tag in a set as an
instance. It then denoises the images and keywords using CNN
and DNN, respectively. An end-to-end learning framework based
on DMIL [22] can be used to classify multispectral (MS) and
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panchromatic (PAN) images. The framework uses two instances,
one for capturing spatial information of the PAN and the other
for describing the spectral information of the MS. Simple fusion
features are produced by direct connection of features obtained
from these two instances. By incorporating simple fusion features
into the fusion network process, high-level fusion features are
obtained and a classifier is obtained. Depend on the architecture
of the network, DMIL embeds MIL into the neural networks [62,
63]. Therefore, it is hard to design neural network especially for
MIL [16,64].

In this paper, we propose similarity-based two-view MIL
(STMIL) algorithm based on our previous developed SMILE
method to solve the problem of image classification with text
information. An image is regarded as a bag and all text of the
image is also regarded as a bag; however, label of instance is still
ambiguous. And then, we propose two-view multiple instance
classifier for image classification.

3. Similarity-based two-view multiple instance learning

In this section, we will propose a new similarity-based two-
view MIL method and apply it to the image classification with
description text. In Section 3.1, we will discuss the similarity
model and two-view data of MIL. In Section 3.2, we present the
proposed STMIL-SVM method, and give the solution process and
results. In Section 3.3, we propose a new alternative framework
for STMIL method and analyze its convergence. We present the
decision boundary determination of the method.

3.1. Data model and two-view data generation

We introduce the proposed similarity-based data model to
describe data as follows. An instance xi from a multiple instance
bag is denoted as {xi,m+(xi),m−(xi)}, where m+(xi) and m−(xi)
represent the similarity of xi to the positive and the negative
class, respectively, and it has 0 ≤ m+(xi) ≤ 1 and 0 ≤ m−(xi) ≤ 1.
Let m+(xi) = 1 and m−(xi) = 0 if the label of the instance xi
is positive. And let m+(xi) = 0 and m−(xi) = 1 if the label of
the instance xi is negative. Hence, there are three possibilities:
{xi, 1, 0} means that xi is a positive instance, {xi, 0, 1} means that
xi is a negative instance, and {xi,m+(xi),m−(xi)} means that xi is
an ambiguous instance, and 0 < m+(xi) < 1 and 0 < m−(xi) < 1.

For A-view, we let SA+p store positive candidates in the positive
bags, SA+a store the remaining instances except for the positive
candidates in the positive bags, and SA−n store the instances from
the negative bags, respectively. For instances in SA+a , they have bi-
memberships {m+(xi),m−(xi)} towards the positive and negative
classes respectively.

Definition 1 (Set-Based Similarity).: Given an instance x and a
subset S, the similarity of x to S is defined as: [19]

R(x, S) =
1
2

∑
xi∈S

e−∥ϕ(x)−ϕ(xi)∥ (1)

Where ϕ(·) is a nonlinear mapping function that is used to
map the instance x or xi into the feature space. Then, both
memberships are calculated as follows:

m+A (xi) =
1
2
[R(x, SA+p )+ 1− R(x, SA−n )] (2)

m−A (xi) =
1
2
[R(x, SA−n )+ 1− R(x, SA+p )] (3)

Based on the above definitions, we have the same explanation
for B-view. If an instance is close to the positive candidates while
far from the negative instances, it has larger membership towards
the positive while lower membership towards the negative. For

A-view, we further let SA
′

= SA+p ∪ SA+a and SA
′′

= SA+a ∪ SA−n .
Similarly, we also let SB

′

= SB+p ∪ SB+a and SB
′′

= SB+a ∪ SB−n for
B-view.

For the problem of image classification with description text,
we convert the image and text into multiple instance data form
using the existing methods and extract the features from the im-
age data as follows. The scale-invariant feature transform
(SIFT) [65] feature is based on the point of interest of some local
appearance regardless of the size and rotation of the image. The
tolerance for changes in light, noise, and micro-angle of view is
also quite high. Based on these characteristics, they are highly sig-
nificant and relatively easy to extract. We then use SIFT algorithm
to extract feature points of the image, and use different clustering
methods, (i.e., k-means [66], EM clustering [67] and DBSCAN [68])
to cluster all the extracted feature points, then construct a bag
of word (BOW) descriptor for each image. We can also use the
segmentation algorithms, (i.e., GrabCut [69] and MILCut [70]) to
divide the image into the A-view. For text feature extraction,
we use the term frequency–inverse document frequency (TF–
IDF) [71] method, which is formed into B-view. The main idea
of TF–IDF is that if a word or phrase appears in an article with
a high frequency and rarely appears in other articles, the word
or phrase is considered to have good class distinguishing ability
and is suitable for classification. For details, see the experiment
section.

In this paper, we let (BA
I , Y

A
I ), I = 1, 2, . . . |Y A

| and (BB
J , Y

B
J ), J =

1, 2, . . . |Y B
| denote the training sets for the A-view and B-view.

Here, |Y A
| and |Y B

| are the number of bags for the A-view and B-
view respectively. For (BA

I , Y
A
I ), I = 1, 2, . . . |Y A

|, where BI denotes
a bag which contains a number of instances, we utilize xi (where
xi ∈ BI ) to denote an instance of BI ; YI denotes the label of the
bag: if YI = 1, then at least one positive instance exists in BI , if
YI = −1, then each instance in BI is negative. For (BB

J , Y
B
J ), J =

1, 2, . . . |Y B
|, we have the same explanation. In the traditional

MIL, there is at least one positive instance in a positive bags, all
negative instances in a negative bag. For (xi, yi), where yi is the
label of an instance xi. The constraints are as follows:∑
i:xi∈BI

yi + 1
2
≥ 1, for YI = 1

∑
i:xi∈BI

yi + 1
2
≤ 0, for YI = −1

(4)

In MIL, even if we know that positive bags contain posi-
tive instances, we still do not know the real labels of the in-
stances in positive bags. In MIL model, we suppose that D =
{(B+1 , Y+1 ), . . . , (B+N+ , Y

+

N+ ), (B
−

1 , Y−1 ), . . . , (B−N− , Y
−

N− )} denotes a
set of training bags, where B+i represents a positive bag with a
positive label Y+i = +1; B−i represents a negative bag with a
negative label Y−i = −1; where N+ and N− are the numbers of
positive bags and negative bags, respectively. Each bag contains
a set of instances, we use x to represent an instance, and y = ±1
denotes label of an instance. We then convert image with text
into multi-instance data.

3.2. STMIL method

In our proposed approach, suppose we train SVM on (BA
I , Y

A
I )

for the A-view and on (BB
J , Y

B
J ) for the B-view. We assume that

fA/B = ωA/Bφ(x) + bA/B are two hyperplanes for both views.
We propose STMIL-SVM method based on our previous work on
MIL [25]. This leads to the following minimization problem of
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STMIL-SVM and the formulation is given by:

min
ω,b,ξ

1
2
∥ωA∥

2
+

1
2
∥ωB∥

2
+ DA{

∑
SA′

m+A [φ(xi)]ξi +
∑
SA′′

m−A [φ(xj )]ξj}

+ DB{
∑
SB′

m+B [φ(xk)]ξk +
∑
SB′′

m−B [φ(xh)]ξh}

+ C
n∑

i=1

ηi

s.t. |ωAφ(xi)+ bA − ωBφ(xj )− bB|≤
n∑

i=1

ηi + ε

ωAφ(xi)+ bA ≥ 1− ξi, ωAφ(xj )+ bA ≤ −1+ ξj

ωBφ(xk)+ bB ≥ 1− ξk, ωBφ(xh)+ bB ≤ −1+ ξh

ξi ≥ 0, ξj ≥ 0, ξk ≥ 0, ξh ≥ 0, ηi ≥ 0

(5)

where DA and DB control the preference of two views. If DA > DB,
A-view is preferred to B-view; otherwise, B-view is preferred to
A-view. Parameter C is a parameter to balance the margin and
errors. And ξi, ξj, ξk and ξh are slack variables. In A-view, for
instance xi in SA+p , its membership is m+A (xi) = 1 towards positive
class. Then, each instance in SA

′

has m+A (xi) towards the positive
class. We set m−A (xj) = −1 for each instance in SA−n , thus each
instance in SA

′′

has m−A (xj) towards the negative class. Similarly,
we have m+B (xk),m

−

B (xh) for B-view. For constraint condition
|fA − fB| ≤

∑n
i=1 ηi+ε, which denotes the constraint of two views.

fA and fB denotes the similarity-based SVM decision functions of
A-view and B-view, respectively. ηi is a variable, which imposes
consensus between the two views, and ε is a slack variable for
allowing some instances to violate the constraint. To maintain
a certain harmonious relationship between the hyperplanes in
the two views, that is, the values between each pair of samples
in different views are not much different. In addition, φ(·) is
mapping function, which maps the data from input space into
a feature space, and the inner product of two vectors in feature
space can be calculated by a kernel function, that is K (v, x) =
φ(v) · φ(x).
Problem Solution

We solve the optimization problem in (5) by introducing the
Lagrangian [19] method, and can get Theorem 1.

Theorem 1. The optimization problem in (5) can be resolved by
the optimization problem (6): We introducing Lagrange multipliers
αi, αj, αk, and αh for the instances in SA

′

, SA
′′

, SB
′

and SB
′′

. Then we
can arrive the solution of problem (6) is to resolve the dual problem:

max F =
∑
SA′

αi +
∑
SA′′

αj +
∑
SB′

αk +
∑
SB′′

αh − (βi + βj)ε

+ αkαhK (xk, xh)+ αj(αi + βi − βj)K (xi, xj)
+ αk(βi − βj)K (xj, xk)− αh(βi − βj)K (xh, xj)

−
1
2
(αi + βi − βj)2K (xi, xi)−

1
2
α2
j K (xj, xj)

−
1
2
α2
hK (xh, xh)−

1
2
α2
kK (xk, xk)−

1
2
(βi − βj)K (xj, xj)

s.t. 0 ≤αi ≤ DAm+A [φ(xi)], 0 ≤ αj ≤ DAm−A [φ(xj)]
0 ≤αk ≤ DBm+B [φ(xk)], 0 ≤ αh ≤ DBm−B [φ(xh)]
0 ≤γi ≤ DAm+A [φ(xi)], 0 ≤ γj ≤ DAm−A [φ(xj)]
0 ≤γk ≤ DBm+B [φ(xk)], 0 ≤ γh ≤ DBm−B [φ(xh)]
0 ≤βi ≤ C, 0 ≤ βj ≤ C, 0 ≤ δi ≤ C

(6)

Proof. The optimization problem in (5) can be converted to
the dual form by differentiating the Lagrangian function with
the original variables ωA, ωB, ξi, ξj, ξk, and ξh. We introduce the
Lagrange multipliers αi ≥ 0, αj ≥ 0, αk ≥ 0, αh ≥ 0, βi ≥

0, βj ≥ 0, γi ≥ 0, γj ≥ 0, γk ≥ 0, γh ≥ 0 and δi ≥ 0. Based
on the defined Lagrange multipliers, the Lagrangian function of
the objective function in (5) can be given as:

L =
1
2
∥ωA∥

2
+

1
2
∥ωB∥

2
+ C

n∑
i=1

ηi −

n∑
i=1

δiηi

+ DA{
∑
SA′

m+A [φ(xi)]ξi +
∑
SA′′

m−A [φ(xj)]ξj}

+ DB{
∑
SB′

m+B [φ(xk)]ξk +
∑
SB′′

m−B [φ(xh)]ξh}

−

∑
SA′

αi[ωAφ(xi)+ bA − 1+ ξi] −

n∑
i=1

γiξi

+

∑
SA′′

αj[ωAφ(xj)+ bA + 1− ξj] −

n∑
j=1

γjξj

−

∑
SB′

αk[ωBφ(xk)+ bB − 1+ ξk] −

n∑
k=1

γkξk

+

∑
SB′′

αh[ωBφ(xh)+ bB + 1− ξh] −

n∑
h=1

γhξh

−

n∑
i=1

βi[ωAφ(xi)+ bA − ωBφ(xj)− bB +
n∑

i=1

ηi + ε]

+

n∑
j=1

βj[ωAφ(xi)+ bA − ωBφ(xj)− bB −
n∑

i=1

ηi − ε]

(7)

Differentiating the Lagrangian function (7) with ωA, ωB, bA, bB,
ξi, ξj, ξk, ξh and ηi, the following equations are obtained:

∂L
∂ωA
= ωA + (−αi − βi + βj)φ(xi)+ αjφ(xj) = 0 (8)

∂L
∂ωB
= ωB − αkφ(xk)+ αhφ(xh)+ (βi − βj)φ(xj) = 0 (9)

∂L
∂bA
= −αi + αj − βi + βj = 0 (10)

∂L
∂bB
= −αk + αh + βi − βj = 0 (11)

∂L
∂ξi
= DAm+A [φ(xi)] − αi − γi = 0 (12)

∂L
∂ξj
= DAm−A [φ(xj)] − αj − γj = 0 (13)

∂L
∂ξk
= DBm+B [φ(xk)] − αk − γk = 0 (14)

∂L
∂ξh
= DBm−B [φ(xh)] − αh − γh = 0 (15)

∂L
∂ηi
= C − βi − βj − δi = 0 (16)

We can get ωA/B according to (8) and (9) as follows:

ωA = (αi + βi − βj)φ(xi)− αjφ(xj) (17)

ωB = αkφ(xk)− αhφ(xh)+ (βj − βi)φ(xj) (18)
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From the Kuhn–Tucker Theorem, we substitute (10)–(18) into
the Lagrangian function (7). Next, we get the (19) below.

L =
∑
SA′

αi +
∑
SA′′

αj +
∑
SB′

αk +
∑
SB′′

αh

− (
n∑

i=1

βi +

n∑
j=1

βj)ε −
1
2
∥ωA∥

2
−

1
2
∥ωB∥

2
(19)

We further substitute (17) and (18) into (19), the Wolfe dual
of (5) can be obtained (6). For the constraints in (6), 0 ≤ αi ≤

DAm+A (xi) and 0 ≤ γi ≤ DAm+A (xi) can be obtained, since αi ≥ 0
and γi ≥ 0 in (12). Similarly, 0 ≤ αj ≤ DAm−A (xj) and 0 ≤ γj ≤

DAm−A (xj) can be obtained, because αj ≥ 0 and γj ≥ 0 in (13);
0 ≤ αk ≤ DBm+B (xk) and 0 ≤ γk ≤ DBm+B (xk) can be obtained
because of αk ≥ 0 and γk ≥ 0 in (14); 0 ≤ αh ≤ DBm−B (xh) and
0 ≤ γh ≤ DBm−B (xh) can be obtained due to αh ≥ 0 and γh ≥ 0
in (15). Finally, 0 ≤ βi ≤ C , 0 ≤ βj ≤ C and 0 ≤ δi ≤ C can be
obtained according to βi ≥ 0, βj ≥ 0 and δi ≥ 0 in (16).

3.3. Alternative framework for STMIL method

In order to solve the problem of two-view MIL, we propose
a new framework for STMIL method as follows. The STMIL ap-
proach is presented in Algorithm 1. After obtain the similarity-
based two-view model, we propose alternative framework on
top of SMILE and MI–SVM [72] methods to solve the problem
of two-view MIL. We first initialize the positive example for
each bag for each view data, and then update the multiple in-
stance classifier for each view at the same time, and the tar-
get is to train two classifiers. For Algorithm 1, we let SA+p , SB+p
store positive candidates in the positive bags in A-view and
B-view, SA+a , SB+a store the remaining instances except for the
positive candidates in the positive bags in A-view and B-view
respectively. And let SA−n , SB−n store the instances from the neg-
ative bags in A-view and B-view, respectively. Firstly, we con-
struct bags by utilizing k-means algorithm to aggregate all the
instances according to their visual feature and textual feature.
Secondly, we initialize label of all bags according to (2) and (3).
Thirdly, αA, αB, β, SA+p , SB+p , SA+a , SB+a , SA−n , SB−n are initialized, and
two positive candidates xAi , x

B
i are randomly determined in A.

Fourthly, SA+p , SB+p are updated by replacing the positive candidate
in the tth iteration, i.e., xA

kt−1
, xB

kt−1
with xAkt , x

B
kt . Fifthly, we arrive

A-view and B-view by separating the text from the images. Lastly,
we solve the optimization problem (6) to calculate ω and b.

For the convergence of the method, because of the value of
F is nonnegative and decreases monotonically, Algorithm 1 can
converge after a finite number of steps. The value of F (·) is
determined by the Lagrange multipliers αA/B, β+/−, γ A/B and δ

and the positive candidates in subset SA+p and SB+p . We alterna-
tively optimize Lagrange multipliers and positive candidate to
maximize the values F (·). Based on this, we have the following
relations:

F (t)
≥ F (t−1) (20)

It is seen that the value of F (·) is monotonically increased dur-
ing the whole process of optimization. Therefore, the procedure
will converge until |F (t−1)

− F (t)
| ≤ ϵF (t−1) satisfies. Here ϵ is a

threshold, which is set to be 0.01 in the experiments.
After solving the dual form (5), ωA/B and bA/B in A/B-view are

obtained. The decision function to predict the instance and bag
label is given by

yA/B(x) =
{
+1, ωA/Bϕ(x)+ bA/B ≥ 0
−1, ωA/Bϕ(x)+ bA/B < 0

(21)

where yA/B(x) denotes the label of x.

Algorithm 1 STMIL-SVM
Require:Training bags {(BI , YI )|I = 1, ...,N} in two views.
1: Constructing bags by using k-means algorithm to aggregate

all the instances;
2: Initialize label YI of all bags BI according to (2) and (3);
3: Produce two views by separating the text from the images;
4: Initialize αA, αB, β, SA+p , SB+p , SA+a , SB+a , SA−n , SB−n ;
5: Let t = 0;
6: repeat
7: t = t + 1;
8: for (each positive bag B+A , B

+

B in A-view, B-view) do
9: for (each instance xAi , x

B
i in A-view, B-view) do

10: Let xAi , x
B
i be the positive candidate of B+A , B+B ;

11: SA+p
′

← SA+p and SB+p
′

← SB+p ;

12: Update SA+p
′

, SB+p
′

by replacing xA
kt−1 , xBkt−1

... with xAi , x
B
i ;

13: SA+a ← D− SA+p
′

− SA−n ;

14: SB+a ← D− SB+p
′

− SB−n ;
15: Calculate the value of f A, f B denoted as F (xi);
16: end for
17: Update SA+p , SB+p by replacing xA

kt−1 , xBkt−1 with ......xAkt , x
B
kt ;

18: Obtain new positive candidate returns argmax F (xi);
19: end for
20: SA+a ← D− SA+p − SA−n , SB+a ← D− SB+p − SB−n ;
21: Compute m+(xi),m−(xi) according to (2) and (3);
22: Obtain αA, αB, bA, bB and F by solving QP in (6) based on

SA+p , SB+p , SA+a , SB+a , SA−n , SB−n ;
23: αA

(t) ← αA, αB
(t) ← αB, F (t)

← F ;
24: until |F (t−1)

− F (t)
|≤ ϵF (t−1);

25: Output(ωA, bA, ωB, bB);

The objective of MIL is to train two classifiers on the bag data
and utilize the obtained classifiers to predict the labels of bags.
Based on the instance-level decision function (21), the decision
function to predict the bag label is given as follows:

Y (B) =

⎧⎨⎩ − 1,
∑
xi∈B

y(xi) = −|B|

+ 1, otherwise
(22)

where B is a test bag; Y (B) denotes the predicted label of B; |B| is
the number of instances in B. B is predicted as negative only if all
instances in B are classified as negative, i.e.

∑
xi∈B

y(xi) = −|B|.
Otherwise, B is classified as positive.

4. Experiments

We perform experiments on real-world datasets to evaluate
the effectiveness of STMIL-SVM. All experiments are run on a
laptop with 2.9 GHz processor and 8 GB RAM. The objectives of
our experiments are as follows:

(1) to evaluate the effectiveness of STMIL-SVM compared with
state-of-the-art methods.

(2) to evaluate the sensitivity of STMIL-SVM to the labeling noise
with respect to classification accuracy.

(3) to evaluate the performance variation of STMIL-SVM with
different instances in instance bag, and the running time of
the STMIL-SVM method.
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4.1. Different methods to generate bags

In the field of machine learning, there are many clustering
algorithms, such as k-means [73], EM clustering algorithm [74],
DBSCAN [75]. The k-means algorithm is one of the most widely
used partition-based clustering algorithms. It divides n objects
into k clusters so that the clusters have higher similarity. The
calculation of the similarity is performed based on the average
of the objects in one cluster. It is a classic algorithm for solving
clustering problems, which is simple and fast. For processing
large data sets, the algorithm maintains scalability and efficiency.
When the cluster is close to the Gaussian distribution, it works
better. At the same time, the selection of the k value is difficult
to estimate. The choice of the initial cluster center has impact
on the clustering results. When the amount of data is very large,
the time cost of this algorithm is very large. The EM clustering
algorithm is calculated alternately in two steps. The E step is
to calculate the expectation. The current estimate of the hidden
variable is used to calculate its maximum likelihood estimate. The
M step is the maximum likelihood value obtained on the E step.
Calculate the value of the parameter. The parameters found on M
step are used in the next E step calculation, which is alternated.
DBSCAN is a density-based clustering algorithm. Different from
the partitioning and hierarchical clustering methods, it defines
the cluster as the largest set of points with density, and divides
the area with sufficient high density into clusters.

There are also many image segmentation algorithms, such as
GrabCut [76], MILCut [70]. GrabCut is a segmentation technique
for color images and often used for human body segmenta-
tion [77]. It is an interactive iterative process that continuously
performs segmentation estimation and model parameter learn-
ing. The GrabCut technique iteratively updates a three map profile
that is initialized according to the results of the scan detector.
MILCut is a method proposed on the basis of MIL, and is used
to solve the problem of interactive image segmentation. It sets a
bounding box, the target object is placed inside the bounding box,
and the background is outside the bounding box. That is, an object
within the bounding box is considered to be a positive bag, and
an object outside the bounding box is considered to be a negative
bag. Thus, the image segmentation problem is transformed into a
MIL problem.

In our experiments, we will use the above three types of
clustering algorithms (i.e., k-means [66], EM clustering [67] and
DBSCAN [68]) to process images, and use two types of segmenta-
tion algorithms (i.e., GrabCut [69] and MILCut [70]) to cut images
to get different bags, respectively.

4.2. Baselines and experimental setting

Since the proposed STMIL is MIL method, we compare its
performance with state-of-the-art MIL methods as follows.

(1) The first is GMI–SVM [9], which focuses on enhancing the
adaptability of traditional SVM.

(2) The second is MI–SVM [52], which trains the classifier it-
eratively until each positive bag has at least one instance
classified as positive. It is seen that MI–SVM aims to obtain
higher training accuracy of positive bags.

(3) The third is DD-SVM [78], which maps a bag of instances
into a bag-level vector and uses these vectors to train a bag-
level classifier, such that all points in positive bags are able
to contribute to the prediction.

(4) The fourth is WellSVM [79], which is used to solve the
learning problem of weakly labeled data by training the tags
of incomplete examples.

(5) The fifth is PSVM-2V [80], which puts two complementary
data in two views, and compensates for the gap between
them.

4.3. Datasets and parameter settings

The first dataset we found is real-world NUS-WIDE1
dataset [81] which is created by the Media Search Laboratory
of National University of Singapore. This dataset includes 5018
unique tags from Flickr 269648 images and associated tags. NUS-
WIDE dataset is six types of low-level features extracted from
these images, including 64-D color histogram, 144-D color cor-
relation graph, 73-D edge direction histogram, 128-D wavelet
texture, 225-D block color moment and SIFT based 500-D packet
and can be used to evaluate the verification of the 81 concepts.

The second dataset we found is Flickr30k Entities2 dataset [82]
which has become a standard benchmark for sentence-based im-
age description. The Flickr30k dataset not only consists of 31783
photographs of everyday activities, events and scenes and 158915
captions, but also contains and extends Hodosh and others’s
corpus of 8092 images. Each image in the Flickr30k is described
independently by five annotators, and different annotators use
different levels of specificity (as shown in Fig. 2) [83].

We put the images into the A-view to create the data of A-
view, and put the text descriptions into the B-view to create the
data of B-view. Our target is to train two classifiers in A-view
and B-view, respectively. In this paper, we recognize an image as
a ‘‘bag’’. We regard all comments below an image as a bag, and
then we utilize word segmentation method to deal with all the
comments and obtain tags.

For the parameter setting of the baselines, we set the pa-
rameters similar with their work. GMI–SVM [9], MI–SVM [84],
DD-SVM [85] and WellSVM [86] all use the Gaussian kernel. DD-
SVM sets the regularization parameter C = 1. For WellSVM, C2
is randomly selected from {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1},
and C1 = 1. GMI–SVM sets the regularization parameter C = 1,
and k = ⌊(T/15)⌋ in the k-means clustering, where T is the total
number of relevant images. Similar to them, the proposed STMIL-
SVM uses the Gaussian kernel, set C = 1. In the experiments,
DA and DB are selected from {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1},
we uses k-means, EM clustering, DBSCAN, GrabCut and MILCut to
generate bags.

4.4. Performance comparison

In this experiment, we use accuracy to measure the perfor-
mance of experimental results. We use NUS-WIDE and Flickr30k
Entities datasets to train classifiers in different ways and compare
their performance.

Firstly, we use the k-means clustering algorithm for all bags
and instances. Euclidean distance can be used for distance calcu-
lation problems in any space. Data points can exist in any space,
so Euclidean distance is a more viable option. In this experiments,
we use k-means clustering algorithm based on Euclidean distance
method [73,87–89]. According to [9], we can give the following
definition:

d(xi, xj) =
√

λ2∥vi − vj∥
2 + ∥ti − tj∥2 (23)

where vi, ti and vj, tj are the visual and textual features of the
ith and jth image, respectively. And d(xi, xj) is the distance be-
tween the ith and jth image. According to the experience of the
predecessors, we set k = ⌊(T/15)⌋ in this method, and where T

1 http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
2 http://shannon.cs.illinois.edu/DenotationGraph/

http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
http://shannon.cs.illinois.edu/DenotationGraph/
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Fig. 2. Flickr30k dataset.

is the total number of images or tags. For the GMI–SVM, MI–SVM
and DD-SVM baselines, since they were proposed for one-view
data, we combine the extracted A-view and B-view data from the
image and text to combine one vector, and conduct the baselines
on the data. We compare the performance of our method with
other classifiers.

Table 1 shows the results of the k-means algorithm used
on the NUS-WIDE dataset and the Flickr30k Entities dataset by
different methods. The k-means used here is based on Euclidean
distance, and k is set 4 in the experiments. From the results of dif-
ferent methods, we find that the performance of the STMIL-SVM
is higher than other methods on the NUS-WIDE and Flickr30k
Entities dataset respectively.

Secondly, we use the EM clustering algorithm for all bags and
instances for image data, respectively. For a sample set S =
{x1, x2, . . . , xn}, which consists of n independent samples. The
category yi corresponding to each sample xi is unknown. That is,
yi is an implicit variable. Initialize the distribution parameter θ .
The E step and M step are defined as follows:

Qi(yi) = P(yi|xi; θ ) (24)

θ = argmax
θ

∑
i

∑
yi

Qi(yi) log
P(xi, yi; θ )

Qi(yi)
(25)

where (24) is the E step and (25) is the M step. Qi(yi) is the
probability density function of the random variable yi. P(·) is the
probability density. The target is to find the value of θ . After
initializing the distribution parameter θ , the loop performs the
E and M steps until it converges. Its convergence conditions are
as follows:

L(θ t+1) ≥
∑

i

∑
yi

Q t
i (yi) log

P(xi, yi; θ t+1)
Q t
i (yi)

≥

∑
i

∑
yi

Q t
i (yi) log

P(xi, yi; θ t )
Q t
i (yi)

= L(θ t ) (26)

As shown in Table 2, the classification results of different
methods are presented, the performance of the STMIL-SVM is
higher than other methods. We discover that performance of
different methods on the data generated by EM algorithm is
higher than that by the k-means algorithm.

Thirdly, the DBSCAN is a density-based clustering algorithm,
which can be applied to both convex sample sets and non-convex
sample sets. DBSCAN defines the cluster as the largest set of

points connected by density, divides the area with sufficient high
density into clusters, and finds clusters of arbitrary shapes in the
spatial database of noise. In this experiment, given a data set of
images D = {x1, x2, . . . , xn}, and xi in D denotes an image. The
radius e is initialized. An unprocessed image in the image set is
selected. If the selected image is a core point, then find all objects
that are reachable from the image density to form a cluster. If
the selected image is an edge point (non-core object), the image
is not processed. Its convergence condition is that all images are
traversed.

As shown in Table 3, the classification results of different
methods are listed, we find that the performance of the STMIL-
SVM is higher than other methods. Furthermore, the performance
of different methods on the data generated by DBSCAN algorithm
is higher than that by the k-means and EM clustering algorithm
respectively.

Fourthly, the GrabCut algorithm uses texture (color) informa-
tion and boundary (contrast) information in the image to obtain
better segmentation results with a small number of user inter-
actions. The energy of image segmentation includes two aspects,
which respectively reflects the region attribute (regional energy)
and boundary property (boundary energy) of the image. In the
experiment, we use the method in [76]. The set of pixels z =
{z1, z2, . . . , zn} in the RGB color space is used to represent gray
values of an image. A set α̃ = {α̃1, α̃2, . . . , α̃n}, (0 ≤ α̃i ≤ 1)
denotes opacity values of pixel. We can get:

α̃i =

{
0, background
1, foreground

(27)

where parameters θ̃ represents foreground and background gray-
level distributions, and consists of histograms of gray values: θ̃ =

{h(z; α̃), α̃ ∈ (0, 1)}. Each image can be represented by z , α̃ and
θ̃ together. We introduce Gaussian Mixture Model (GMM) [90] in
place of histograms. Then, we introduce an additional vector k̃ =
{k̃1, k̃2, . . . , k̃n}. According to the steps of the GrabCut algorithm,
the foreground set TF , background set TB, unknown field set TU ,
α̃ are initialized. Then, we assign GMM components to pixels in
TU :

k̃n = argmin
k̃n

Dn(α̃n, k̃n, θ̃ , zn) (28)

where Dn(α̃n, k̃n, θ̃ , zn) = − log p(zn | α̃n, k̃n, θ̃ ) − logπ (α̃n, k̃n),
and p(·) is a Gaussian probability distribution. π is a mixture
weighting coefficient. Next, learn parameters θ̃ for data z:

θ̃ = argmin
θ̃

U(α̃, k̃, θ̃ , z) (29)
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Table 1
Results of the k-means used on the different datasets by different methods.

STMIL-SVM GMI–SVM MI–SVM DD-SVM WellSVM PSVM-2V

NUS-WIDE 66.2% 62.6% 61.6% 59.4% 52.1% 64.9%
Flickr30k Entities 65.9% 61.7% 60.8% 59.2% 51.6% 62.3%

Table 2
Results of the EM clustering used on the different datasets by different methods.

STMIL-SVM GMI–SVM MI–SVM DD-SVM WellSVM PSVM-2V

NUS-WIDE 68.1% 63.9% 62.8% 62.3% 54.6% 67.4%
Flickr30k Entities 67.8% 63.5% 62.5% 61.4% 53.8% 65.1%

Table 3
Results of the DBSCAN used on the different datasets by different methods.

STMIL-SVM GMI–SVM MI–SVM DD-SVM WellSVM PSVM-2V

NUS-WIDE 68.9% 64.7% 63.6% 64.3% 55.9% 66.8%
Flickr30k Entities 67.6% 63.7% 63.4% 63.9% 54.4% 63.9%

where the data item U is used to evaluate the fit of the opacity
distribution α̃ to the data z . Finally, minimum cutting method to
estimate segmentation:

min
α̃

min E(α̃, k̃, θ̃ , z) (30)

where E is an energy function of image segmentation. Repeat
from (28), until convergence.

As shown in Table 4, the classification results of different
methods are listed, the performance of the STMIL-SVM is still
higher than other methods. The performance of different methods
on the data generated by GrabCut algorithm is lower than that
by the DBSCAN algorithm, and between the k-means and EM
clustering algorithm.

Fifthly, MILCut uses pixels on the sweeping lines and connects
the lines into a bounding box. Similar to the method in [70],
we also use the superpixels method [91] to process the original
image and convert it into a MIL problem. In the experiments, we
introduce simple linear iterative clustering (SLIC) [92], which is
an adaptation of k-means for superpixel generation. To produce
roughly equally sized superpixels, thus the grid interval is Gn =√
N/K , where N is the number of pixels and K is the number

of superpixels. We set N = 2400, this means that each image
produces 2400 pixels. We divide the image into slices according
to the superpixel. We use a bounding box to divide the image into
two regions. Objects in the bounding box are treated as a positive
bags, and objects outside the bounding box are considered a
negative bags. This translates into a typical MIL problem.

As shown in Table 5, the classification results of different
methods are presented, we find that the proposed STMIL-SVM
outperforms other methods. The performance of different meth-
ods on the data generated by GrabCut algorithm method is better
than that of the GrabCut algorithm, and between the k-means
and EM clustering algorithm. In addition, the performance of
MILCut is higher than that by the above three clusters algorithm
(i.e., k-means, EM clustering and DBSCAN).

In all, we also utilize F1-measure to compare the algorithms,
and the results under different feature extraction methods for
multiple instance learning are listed in Tables 6 and 7, we can ob-
serve that, the performance of the proposed STMIL-SVM method
always performs better than other methods. Above, we have com-
pared the proposed STMIL-SVMmethod with GMI–SVM, MI–SVM,
DD-SVM, WellSVM and PSVM-2V methods based on five image
features generation methods, the results show that our method
can always yield a higher performance compared with other
methods. In addition, the bags generated by DBSCAN method
can deliver a higher performance compared with other bags
generation methods.

The clustering methods (k-means, EM clustering and DBSCAN)
are used to transform the image into the multiple instance bag,
this is kind of data processing. In the proposed STMIL method,
we do not utilize the clustering method. In addition, for the
feature extraction for bag generation, we can also use the two
GrabCut, MILCut, which are not clustering methods. Even for the
clustering method k-means, EM clustering and DBSCAN, if the
clustering result is not appropriate, the multiple instance bag
method can reduce the effect of them on the subsequent learning.
From Tables 1–3, we can see that the results using bag generation
with k-means, EM clustering, and DBSCAN are comparable stable,
similar as the results with the bag generation GrabCut, MILCut.

4.5. Variation to bag sample number

We compare the proposed STMIL-SVM with GMI–SVM, MI–
SVM, WellSVM and PSVM-2V using different numbers of training
bags. We set nB = 2, 4, 6, 8 and 10. The results of different
methods on the NUS-WIDE and Flickr30k Entities dataset are
shown in Tables 8 and 9.

From the Table, we can find that as the number of bags
increases, the performance of different methods also increases.
In addition, the results show that our method can always yield a
higher performance compared with other methods. Furthermore,
the performance of our method and GMI–SVM reaches a peak
when number of training bags nB = 8.

4.6. Sensitivity to input data noise

Our experiments also test the sensitivity of algorithm perfor-
mance to input data noise. For each dataset, we first calculate the
standard deviation σ 0

i of the entire data along the ith dimension,
and then obtain the standard deviation of the Gaussian noise σi
randomly from the range [0, 2 · σ 0

i ]. In this way, noise can be
added to the positive class as a vector having the same dimension
as the original dataset. Fig. 3 illustrates the basic idea of the
method used to add the noise to data examples. Specifically, the
standard deviation σ 0

i of the entire data along the ith dimension
is first obtained. In order to model the difference in noise on
different dimensions, we define the standard deviation σi along
the ith dimension, whose value is randomly drawn from the range
[0, 2 · σ 0

i ]. Then, for the ith dimension, we add noise from a
random distribution with standard deviation σi. In this way, a
data example xj is added with the noise, which can be presented
as a vector [93].

σ xj = [σ
xj
1 , σ

xj
2 , . . . , σ

xj
n−1, σ

xj
n ] (31)
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Table 4
Results of the GrabCut used on the different datasets by different methods.

STMIL-SVM GMI–SVM MI–SVM DD-SVM WellSVM PSVM-2V

NUS-WIDE 64.7% 60.9% 58.3% 58.2% 48.7% 61.3%
Flickr30k Entities 63.1% 59.8% 56.4% 57.6% 48.3% 61.8%

Table 5
Results of the MILCut used on the different datasets by different methods.

STMIL-SVM GMI–SVM MI–SVM DD-SVM WellSVM PSVM-2V

NUS-WIDE 65.3% 62.1% 60.2% 58.5% 50.2% 64.5%
Flickr30k Entities 65.1% 61.6% 58.7% 56.6% 49.1% 63.8%

Table 6
F1-measure values of different methods on the NUS-WIDE dataset.

STMIL-SVM GMI–SVM MI–SVM DD-SVM WellSVM PSVM-2V

k-means 67.6% 61.9% 60.5% 62.5% 51.4% 63.7%
EM Clustering 66.8% 64.1% 63.2% 60.0% 53.3% 65.6%
DBSCAN 64.7% 64.5% 62.0% 60.4% 58.4% 63.1%
GrabCut 62.5% 61.9% 58.8% 57.4% 52.5% 60.3%
MILCut 65.6% 64.0% 59.8% 58.3% 49.9% 62.4%

Table 7
F1-measure values of different methods on the Flickr30k entities dataset.

STMIL-SVM GMI–SVM MI–SVM DD-SVM WellSVM PSVM-2V

k-means 63.7% 63.2% 58.4% 60.5% 50.7% 59.7%
EM Clustering 68.7% 65.9% 61.5% 59.1% 55.2% 67.1%
DBSCAN 67.8% 65.4% 61.3% 60.7% 52.3% 66.5%
GrabCut 65.7% 63.6% 62.7% 58.6% 52.9% 65.3%
MILCut 64.6% 60.1% 57.7% 55.8% 53.8% 63.9%

Table 8
Performance varying for different number of instances in each bag on the NUS-WIDE dataset.

STMIL-SVM GMI–SVM MI–SVM WellSVM PSVM-2V

k-means

nB = 2 66.3% 62.8% 61.7% 52.1% 62.2%
nB = 4 67.1% 64.5% 63.3% 52.5% 63.8%
nB = 6 68.3% 66.4% 64.7% 52.9% 66.7%
nB = 8 69.8% 66.8% 64.7% 53.4% 67.1%
nB = 10 69.7% 66.6% 64.8% 53.9% 67.5%

EM Clustering

nB = 2 66.8% 63.7% 62.1% 52.7% 62.4%
nB = 4 67.7% 65.5% 64.3% 53.1% 64.1%
nB = 6 68.5% 66.7% 65.6% 57.4% 65.8%
nB = 8 69.3% 66.9% 65.5% 54.6% 67.2%
nB = 10 69.1% 66.8% 65.3% 54.8% 68.8%

DBSCAN

nB = 2 67.3% 64.5% 64.2% 53.8% 63.0%
nB = 4 68.1% 64.9% 64.7% 55.3% 64.7%
nB = 6 68.9% 66.4% 64.9% 53.8% 67.9%
nB = 8 70.1% 68.3% 67.3% 59.3% 68.2%
nB = 10 69.5% 67.1% 66.8% 61.2% 68.1%

MILCut

nB = 2 61.6% 60.2% 54.3% 47.4% 60.7%
nB = 4 63.4% 62.3% 58.1% 48.2% 61.4%
nB = 6 65.3% 64.2% 60.3% 48.7% 64.9%
nB = 8 67.9% 66.1% 62.8% 49.6% 66.5%
nB = 10 66.7% 65.8% 63.1% 51.7% 66.8%

GrabCut

nB = 2 60.3% 58.8% 57.2% 43.9% 60.1%
nB = 4 63.0% 61.7% 60.1% 45.1% 62.6%
nB = 6 65.2% 63.3% 62.4% 47.3% 64.4%
nB = 8 66.6% 66.2% 63.1% 49.6% 65.3%
nB = 10 65.9% 65.1% 62.3% 50.5% 65.7%

where n denotes the number of dimensions for a data example
xj , and σ

xj
i , i = 1, . . . , n represents the noise added into the ith

dimension of the data example.
In our experiments, we make the percentage of the data noise

vary from 0% to 30%. Here, we utilize the data generated by
vector plus offset constant method as an example, and add the
noise into the instances of each bag. The Figs. 4 and 5 illustrates
the effect of different proportions of noise on performance. From
the two figures, we find that as the level of noise increases, the
performance of all methods decreases. However, STMIL-SVM can

always obtain a higher accuracy and is less sensitive to noise
compared with other methods.

4.7. Parameter sensitivity analysis

In this set of experiment, we test the sensitivity of the STMIL-
SVM to its parameters using the NUS-WIDE data set as example.
In the proposed method, there are several parameters, we analyze
the performance variation at different values of parameters. We



Y. Xiao, Z. Yin and B. Liu / Knowledge-Based Systems 201–202 (2020) 105661 11

Table 9
Performance varying for different number of instances in each bag on the Flickr30k Entities dataset.

STMIL-SVM GMI–SVM MI–SVM WellSVM PSVM-2V

k-means

nB = 2 65.9% 61.7% 60.8% 51.7% 62.2%
nB = 4 66.4% 63.4% 62.9% 51.9% 63.7%
nB = 6 67.6% 65.1% 64.1% 53.6% 65.9%
nB = 8 69.1% 66.6% 64.2% 53.8% 67.4%
nB = 10 68.9% 66.3% 64.1% 54.7% 68.1%

EM Clustering

nB = 2 66.3% 62.8% 58.1% 50.6% 62.7%
nB = 4 66.9% 63.3% 59.2% 51.5% 62.9%
nB = 6 67.8% 64.7% 62.5% 52.4% 63.3%
nB = 8 69.4% 65.1% 63.7% 53.1% 65.5%
nB = 10 69.3% 65.1% 63.5% 54.3% 66.1%

DBSCAN

nB = 2 66.9% 63.3% 60.4% 52.2% 62.4%
nB = 4 67.4% 64.7% 63.6% 54.7% 63.2%
nB = 6 67.9% 65.8% 64.7% 55.5% 65.6%
nB = 8 68.7% 67.2% 66.6% 58.1% 66.5%
nB = 10 68.6% 67.0% 66.3% 56.8% 67.2%

MILCut

nB = 2 60.1% 59.8% 55.6% 46.2% 58.3%
nB = 4 62.3% 62.0% 57.7% 47.6% 61.8%
nB = 6 66.2% 63.1% 58.1% 48.1% 63.4%
nB = 8 66.5% 65.7% 58.8% 49.9% 64.9%
nB = 10 66.1% 63.9% 60.1% 50.3% 65.2%

GrabCut

nB = 2 58.7% 56.5% 56.1% 44.8% 57.3%
nB = 4 62.2% 60.4% 60.0% 45.3% 59.1%
nB = 6 65.0% 63.1% 62.7% 46.2% 62.5%
nB = 8 66.1% 65.3% 64.1% 48.1% 64.8%
nB = 10 64.8% 64.1% 61.2% 49.9% 63.2%

Fig. 3. Add the noise to a data example.

Fig. 4. NUS-WIDE dataset.

first concern the four parameters C , DA,DB for parameter sensitiv-
ity analysis in STMIL-SVM. We first draw the figure of parameter
C influence when DA and DB are set as a fixed value, in which

Fig. 5. Flickr30k Entities dataset.

Fig. 6. The Parameter Sensitiveness of C on NUS-WIDE.

C is changed from 10−3 to 103. The result is shown in Fig. 6,
we discover that the performance of STMIL-SVM increases as the
C value increases from 10−3, and the performance reaches its
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Fig. 7. The Parameter Sensitiveness of DA and DB on NUS-WIDE.

Fig. 8. NUS-WIDE dataset.

Fig. 9. Flickr30k Entities dataset.

peak value at C = 1, and then the performance decreases as
the C value continues to increase. In addition, DA and DB are
the parameters to balance the importance of the samples. In
order to study the influence of the values of DA and DB on the
performance of the STMIL-SVM, we let DA = DB and illustrate
the performance variation as the DA and DB change. The result is
illustrated in Fig. 7, in which DA and DB increase from 10−3 to 103.
From the figure, we find that the performance of the proposed
method increases to its peak and then decreases as DA and DB
increase.

4.8. Average running time comparison

We have compared the performance of our method and other
methods, and it is still interesting to know the average running
time of each SVM algorithm. All the experiments are imple-
mented with MATLAB codes. Figs. 8 and 9 illustrates the average
running time of different methods executing the NUS-WIDE and
Flickr30k Entities dataset, respectively. The average runtime of
STMIL-SVM is more than that of other methods, because our
method needs to train two classifiers simultaneously. In addition,
the average time consumed by the STMIL-SVM and WellSVM
methods is roughly the same because both methods are based
on two-view learning.

5. Conclusion and future work

In this paper, we propose a new similarity-based two-view
MIL (STMIL). We first utilize the two-view learning method to
place images and text information in two views, and convert
the image classification problem into a MIL problem. We then
propose the two-view MIL for image and textual classification.
We present the original STMIL-SVM problem and solve it using
the Lagrangian method, and then present the optimization frame-
work of STMIL-SVM method. In the experimental part, we use
three clustering algorithms (k-means, EM clustering and DBSCAN)
and two image segmentation algorithms (GrabCut and MILCut) to
process the images and compare their performance. Experiments
have shown that our method has higher performance compared
with other MIL methods.

In the future, we will expand our approach and framework to
the field of video processing and online data.
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